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Up-current-rotated, shoreface-connected ridges are found in various coastal areas
around the world. An often-quoted conjecture is that these ridges form during storm
conditions through free instabilities in the erodible bed. Under these conditions both
waves and currents are expected to play a significant role in the hydrodynamics.
Although some existing models have included the effects of waves parametrically in
their bottom friction terms and sediment equations, the dynamical effects of wave–
current interaction have not been explored. In this paper we begin to rectify this
by considering the effects of wave–current interaction on the bed-form instabilities
of a simple model. This raises the possibility of unsteady alongshore flows and
questions about the roles of wave parameters and boundary conditions, which we
address here. We show that the flow is stable under the wave forcing; however the
waves do affect the bed-form instability. The main dynamical effect of the waves
is in altering the shapes of the unstable modes. Under various conditions, however,
waves may enhance or suppress the instability or introduce new unstable modes.
They also affect the celerity of the ridges. In addition, we investigate the mechanisms
whereby the waves affect the instability. We also show a potential problem with the
parameterization in terms of wave orbital velocity.

1. Introduction
Up-current-rotated, shoreface-connected ridges are found in certain coastal areas,

such as off the east coast of North America (Duane et al. 1972; Swift et al. 1972),
off the Dutch coast (van der Meene 1996) and off the Argentinian coast (Parker,
Lanfredi & Swift 1982). These ridges form at angles of around 20◦–35◦ to the
shore, with the seaward side rotated upstream with respect to the landward side.
They form in water 5–30 m deep. The ridges are spaced 5–10 km apart and can be
several metres high. Most ridge evolution happens during large storms which drive
alongshore currents on the order of 0.5 m s−1. These storms occur several times a year
at these locations, with durations from hours to days. In the case of the Dutch Coast,
tidal currents are also significant but in the Mid-Atlantic Bight and off the coast of
Argentina the role of tides is negligible. The ridges migrate downstream with a celerity
of a few metres per year. Following Calvete, de Swart & Falques (2002) we consider
the specific case of Long Island, USA, where the ridges are spaced approximately
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3.5 km apart, have a growth rate on the order of 100 years and a downstream celerity
of around 2.3 m yr−1.

The original supposition was that shoreface-connected ridges were sill-stands left
over on the strand plain from the return of the Holocene sea (McClennen &
McMaster 1971). However, their orientation, with the downshore end connected
to the shoreface, does not fit with this conjecture unless the angle of the shoreline has
changed significantly since then. Also, as these ridges are active under present day
hydrodynamic conditions (Swift et al. 1978), they are not just a relic feature. Swift,
Duane & McKinney (1973) hypothesized that the ridges are an erosional feature:
storm-driven flows scour out the landward side of the shoreface-connected ridges;
gradually the shoreline retreats, and as it does, the ridges migrate down-current and
also offshore. A third hypothesis is that they form as instabilities of the erodible bed
under the influence of the local hydraulic regime.

The idea that these ridges formed through a free instability was postulated by
Trowbridge (1995), largely inspired by the work of Huthnance (1982) based on Off’s
(1960) observations of current-aligned ridges. Using a simple model where the evolu-
tion of the bottom topography is related to the divergence of the flow, Trowbridge
(1995) shows that the unstable eigenfunctions are up-current-rotated ridges similar
to those observed. Mass considerations mean that the alongshore flow is deflected
offshore over the ridge crests. This deflection causes the flow to converge, which causes
deposition and increases the height of the ridges. Thus up-current-rotated ridges
can form from the instability of a smooth erodible bottom. Trowbridge’s model,
however, has no distinguished length scale to explain the size and spacing of the
ridges.

Falques, Calvete & Montoto (1998a) and Falques et al. (1998b) extended
Trowbridge’s model by using two-dimensional shallow-water equations for the evolu-
tion of the currents and adding a diffusive term to the bottom-topography evolution
equation. The diffusive term represents the proclivity of sand grains to move down-
slope. With these additions the model selects a distinguished length scale. The fastest
growing mode, which often represents the length scale of the final feature, is chosen
through a balance between the destabilizing effects of the convergence term and the
stabilizing effects of the diffusion term. This model still has the problem, however,
that the ratio between e-folding time scale and the celerity is unrealistic.

The basic model was modified by Calvete et al. (2001a) and later papers (Calvete
et al. 2002; Walgreen, Calvete & de Swart 2002; Calvete & de Swart 2003; Walgreen,
de Swart & Calvete 2003) to include both bed load and suspended load. Wave
effects were also included parametrically in the bottom friction term and the sediment
dynamics equations. These additions give more realistic ratios between the e-folding
and migration time scales. Walgreen, de Swart & Calvete (2003, 2004) studied the
morphological effects of allowing for different grain sizes. Calvete et al. (2001b) and
Walgreen et al. (2002) considered both tides and steady currents. Finite-amplitude
effects were explored in Calvete et al. (1999, 2002) and Calvete & de Swart (2003)
with the overall conclusion that the outcome of the linear instability calculations was
robust, at least qualitatively but that other modes in addition to the fastest growing
mode were also important to the final bed-form shape.

Field observations (Duane et al. 1972; Swift et al. 1972; Parker et al. 1982) have
shown that considerable ridge evolution occurs during storms. In such oceanic
conditions both waves and currents are prominent in the hydrodynamics. Restrepo
(2001) developed a coupled system of equations for the waves, currents and erodible
bed by depth averaging the wave–current model in McWilliams & Restrepo (1999)
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and deriving a mass conservation statement for the sediment consistent with the tracer
evolution equation which takes into account waves and currents.

Restrepo (2001) considered the effect of waves on the linear instability results that
utilized current-only models for the hydrodynamics. Furthermore, he attempted to
check the crucial assumption of the adiabatic approximation which was exploited in
Falques et al. (1998b) to suppress potential instabilities due to the hydrodynamics.
However, the analysis of the wave effects on the shoreface-connected ridge model in
was tentative, for two reasons: the linear wave dynamics interacted only weakly with
the rotational flow and the bottom topography and, secondly, resolution constraints
were impractical from a computational standpoint.

Here we take another look at how wave effects change the outcome of instability
calculations involving current-only models for the shore-connected ridge problem.
We do so armed with a much improved wave/current interaction model which was
derived by revisiting the scaling, going to higher order and circumventing the small-
scale resolution problem. This gives a much more complete and generally applicable
model for wave–current interaction on the continental shelf. This model appears in
McWilliams, Restrepo & Lane (2004, referred to hereinas MRL04).

With a dynamic model for the fully three-dimensional hydrodynamics and a suitable
sediment evolution model it is now possible to explore the shoreface-connected ridge
problem over time scales that encompass the variable forcing conditions. Moreover,
our model is capable of handling the extreme temporal scales, encompassing the
range from storm-driven flows to hydrodynamics over decades, and spatial scales of
the order of tens of metres to tens of kilometres.

Before we can consider the transient problem, however, there are a number of
fundamental issues related to the assumptions in the shoreface-connected ridge model
that need to be addressed. This study will show how the shoreface-connected coupled
sediment–ocean dynamics model is modified when waves are taken into account. Spe-
cifically, we consider (1) how the linear instability results on the shoreface-connected
ridge problem change when waves are taken into account; (2) how these changes
are manifested when wave parameters are varied. Furthermore, our consideration of
wave–current interaction raised other issues. This paper also addresses: (3) the differ-
ence between fixing the perturbation at the shoreward boundary (Dirichlet boundary
conditions) and imposing a no-flux (Neumann) boundary condition; (4) whether the
adiabatic assumption is justified i.e. whether currents are steady, especially under wave
forcing, and whether the solutions are significantly affected if the morphological and
hydrodynamic time scales are not well separated; (5) what wave mechanisms affect the
morphodynamics; and finally (6) we show a potential problem with parameterizing
the sediment fluxes in terms of the wave orbital velocity.

2. Governing equations
Shoreface-connected ridges form in finite-depth water on the continental shelf. The

peak of the wave spectrum has a wavelength of around 100 m giving µ = kH0 ∼ 1,
where k is the wavenumber magnitude and H0 is the characteristic depth of the water
column. The ridges represent changes in bottom-topography elevation of metres over
distances of kilometres. Thus their length scales are long compared with the typical
length scale of the waves. The storm-driven currents have speeds on the order of
0.25–0.5 m s−1 in microtidal regions (Calvete et al. 2001a) with comparable wave
orbital speeds. This suggests that the asymptotic theory derived in MRL04 is valid in
this setting.
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Figure 1. Schematic diagram of quantities used in the calculations (not to scale).
(a) side view; (b) plan view.

We thus base our equations on those derived in MRL04. These equations represent
a complete self-consistent model and include the full implications of the wave–
current interactions on boundary conditions, tracer equations, etc. These equations
also give the full wave dynamics, a problem which limited Restrepo (2001). The full
implications of this substantially more complete and scale-appropriate model will
only be seen when we consider the dynamic, storm-driven, time-dependent dynamics
of the shoreface-connected ridges. This will include the long-wave contributions and
multifrequency wave-spectrum wave trains. For the moment we limit considerations to
the simpler case of the effect of a single wavetrain on the shoreface-connected ridges.

We consider a model domain that is semi-infinite in the x (cross-shore) direction
and periodic in the y (longshore) direction. The model does not take into account
the surf zone so that x = 0 should not be considered as the shore per se but rather
the shorewardmost part of the domain.

2.1. Waves

We assume monochromatic waves at the peak of the spectrum with wavenumber,
kkk = −(k cos(θ), k sin(θ)), amplitude A and frequency σ (see figure 1). The group velocity
of the waves is CCCg . Quiescent ocean level is Z = 0 with the ocean bottom at Z = −H .
The waves propagate according to the equations (see MRL04)

∂kkk

∂t
+ CCCg ··· ∇⊥kkk = − kσ

sinh[2kH ]
∇⊥H,

∂σ

∂t
+ CCCg ··· ∇⊥σ = 0,

∂ |A|2
∂t

+ ∇⊥ ··· (CCCg|A|2) = 0.

Time is t and ∇⊥ = (∂/∂x, ∂/∂y) is the horizontal derivative. The frequency is related to
the scalar wavenumber through σ 2 = gk tanh(kH ). Note that these equations agree to
lowest order with the standard equations in Mei (1989) given the scaling assumption
made in MRL04. For convenience we rewrite the wavenumber equations in terms of
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the scalar wavenumber k and the angle of the waves θ with respect to the x-axis:

∂k

∂t
+ CCCg ··· ∇⊥k =

σk

sinh(2kH )

(
cos(θ)

∂H

∂x
+ sin(θ)

∂H

∂y

)
,

∂θ

∂t
+ CCCg ··· ∇⊥θ = − σ

sinh(2kH )

(
sin(θ)

∂H

∂x
− cos(θ)

∂H

∂y

)
.

Note that the scalar wavenumber evolution is dependent only upon the bottom-
topography gradient parallel to the direction of the waves, whereas the wave-angle
evolution depends only upon the bottom-topography gradient perpendicular to the
wave direction.

The wave quantities will be specified in the far field (x → ∞) and we assume a
radiation boundary condition at x = 0. This is commensurate with the waves passing
through this domain and then being dissipated through breaking closer to shore in
the surf zone.

2.2. Currents

We derive shallow water equations from MRL04, § 9 by vertically integrating the
horizontal momentum equations (MRL04, (9.15)) and using the continuity equation
(MRL04, (9.2)), boundary conditions (MRL04, (9.3), (9.9), (9.12)) and the vertical
momentum equation (MRL04, (9.17)). We assume that vertical variations in velocity
are negligible (see MRL04, § 12 for a general discussion and also Lentz (2001) for the
situation at the coast at North Carolina). We add surface and bottom forcing terms.
This gives the vertically integrated horizontal momentum equation

∂VVV

∂t
+ VVV ··· ∇⊥VVV + f ẐZZ × VVV + g∇⊥ζ c = −g∇⊥G − ẐZZ × VVV St(χc + f ) +

τττ − r(x)VVV

H + ζ c
. (2.1)

VVV =(U, V ) is the vertically averaged current, χc = ẐZZ ··· (∇⊥ × VVV ) the vertical vorticity, ζ c

is the mean sea elevation (averaged over the waves), VVV St = g|A|2/(2σH )kkk = (USt, V St)
is the vertically averaged Stokes drift. (This expression for the vertically averaged
Stokes drift corrects an obvious typographical error in Restrepo (2001).) The Coriolis
parameter is f , acceleration due to gravity is g; G is a Bernoulli-head wave forcing
term that combines wave effects on the pressure and sea elevation as well as the
ambient pressure (further details are given in MRL04). It causes a form of wave
set-up in the mean sea elevation. In the vertically averaged case G can be evaluated
as

G =

〈
|A|4k3

2 sinh(2kH )

(
1

2
+ tanh2(kH ) − sinh2(kH )

+
9

16 sinh6(kH )
+

9

4 sinh2(kH )

)〉
−

〈
|A|2k tanh(kH )kkk ··· VVV

σ

〉
. (2.2)

The vortex force term

−ẐZZ × VVV St(χc + f )

captures the effect of vorticity transferred to the waves through the action of the
rotational currents and from planetary rotation. The effect of the wind is represented
by a kinetic surface stress τττ . We assume that the bed shear stress is linear in VVV .
It is more common to use a quadratic term in VVV ; however Falques et al. (1998a)
showed that this makes minimal difference to the results. The coefficient of friction r

is proportional to the wave orbital velocity at the bottom, i.e. r = r̂ |uw|.
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The fluid mass conservation equation is

∂

∂t
(ζ c + H ) + ∇⊥ ··· ((H + ζ c)(VVV + VVV St)) = 0. (2.3)

Unlike Restrepo (2001), here we include the tendency term ∂H/∂t in equation (2.3).
The bottom topography changes over time scales that are appreciably slower than the
time scales associated with changes in surface elevation, thus ∂H/∂t can be thought of
as a perturbation to (2.3). Over short time scales, the surface elevation balances with
the divergence of the vertically integrated mass flux. Over long times scales, however,
the bottom topography changes. The sea surface elevation then adjusts slightly to
take this into account.

To ensure that there is no net flux of water out of the shoreward side of the
domain we assume that the Eulerian velocity balances the Stokes flow in the cross-
shore direction, i.e.

U (x = 0) + USt(x = 0) = 0.

We have a no stress boundary on V at x = 0. At the outer boundary, we assume that
all quantities are finite for x → ∞.

The conservative wave effects on the currents are completely characterized by the
vortex force, Bernoulli head and Stokes drift terms. Passive tracers are also advec-
ted by the Stokes drift in addition to the current. As discussed in MRL04 and Lane,
Restrepo & McWilliams (2007) this is an alternative to the radiation stress paramet-
erization. If wave effects, which enter explicitly through the Stokes drift velocity VVV St

and the Bernoulli head G, are suppressed, we then obtain the standard shallow-water
current equations. The vortex force and the Stokes drift terms are related in that
they both represent advection by the Stokes drift (in the case of the vortex force it is
advection of vorticity). The Bernoulli head term adjusts the pressure due to the waves
and causes a small change in the mean sea elevation. Its effect on the evolution of
the bottom topography is small and could possibly be left out of future work.

2.3. Bottom topography

The sediment dynamics equation for ∂H/∂t is

∂H

∂t
= ∇⊥ ··· QQQ, (2.4)

where QQQ is the sediment transport. We adopt a sediment flux model similar to that
of Calvete et al. (2002) and Walgreen et al. (2002), composed of a bed-load and a
suspended-load term

QQQ =
µ

(1 − p)
(QQQb + QQQs);

µ ≈ 0.05 is the fraction of the time there are storms around Long Island and p ≈ 0.4
is the porosity of the bed.

The bed-load term is modelled by

QQQb = νb(|uw|2(vvv + vvvSt) − λb|uw|3∇h), (2.5)

and the suspended-load term is modelled by

QQQs = νs(H |uw|3(vvv + vvvSt) − λs |uw|5∇h). (2.6)

Both these terms include a component due to the divergence of the Lagrangian current
and a diffusion term that represents the tendency of sand to form smooth structures.
The waves affect the bottom-topography evolution equation in two ways. First, as
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tracers are advected by the Stokes drift in addition to the Eulerian velocity, we must
also take this into consideration in the model (see MRL04). Secondly, the waves act
as an agent for bottom stirring, with the coefficients in the bed- and suspended-load
terms being proportional to powers of the wave orbital velocity |uw| (see Calvete et al.
2002). The average orbital wave velocity at the bottom of the water column is

〈|uw|〉 =

〈
σ |A|

sinh(kH )

〉
. (2.7)

Note that this differs from previous papers (Calvete et al. 2002; Walgreen et al. 2002),
where the wave orbital velocity was parametrized as a function of bottom topography
through a shoaling formula.

For convenience, we rewrite (2.4) as

1

α

∂H

∂t
= Q̃b + δsbQ̃

s, (2.8)

where α = Th/Tmb is the ratio of the hydrological time scale, Th = L/U0, and the
morphological time scale of the bed-load transport,

Tmb =
(1 − p)

µ

H0L

Qb
0

=
(1 − p)

µ

H0L

νbU
2
w0U0

.

U0 is the characteristic current speed, Uw0 is the characteristic wave orbital velocity, H0

is the characteristic depth, L is the characteristic horizontal length scale and Qb
0 is the

characteristic bed-load sediment transport. Q̃b =H0/(νbU
2
w0)Q

b and Q̃s = 1/(νsU
3
w0)Q

s

are the sediment transports multiplied by the ratio of the characteristic mass transport
to the respective characteristic sediment transports. δsb = Tmb/Tms = νsUw0H0/νb is the
ratio of the morphological time scales of the bed-load transport to the suspended-load
transport.

Although there are more complicated sediment dynamics models (see for example
Walgreen et al. (2003, 2004), which include additional effects such as differing grain
sizes) this model contains the essential features that reproduce the expected estimates
for the ridge celerity and spacing. Moreover, the simplicity of this model allows the
effects of the waves on the model to be more clearly discerned.

The above model includes the several different effects of waves. Two of these,
namely their effect on the bottom friction of the current and as an agent for bottom
stirring in the sediment model, have been included in previous models (Calvete et al.
2002; Walgreen et al. 2002) (although, as we mention in § 5.4 and Appendix A, they do
not consider the full effect of these terms on the instability). The direct conservative
effects of the waves on the current (either through addition of the vortex force and
Bernoulli head or the radiation/interaction stress) has not previously been included
in a model of shoreface-connected ridge formation, nor has the fact that tracers are
advected by the Lagrangian current (i.e. the Eulerian current plus the Stokes drift)
rather than the Eulerian current alone.

3. Reference state
We derive a steady-state solution to the equations of hydrodynamics and sediment

motion, consistent with Calvete et al. (2002), which includes the conservative wave
effects.

Our reference bottom topography is independent of y. It increases linearly from a
depth of H0 at x = 0 to H∞ over a distance L and is flat thereafter. We smooth the
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bottom around x = L. This avoids a jump discontinuity in the derivative that causes
Gibbs oscillations in the spectral representation of the eigenvalue problem. As in
Calvete et al. (2002), we use parameter values consistent with Long Island which give
H0 = 14 m, H∞ = 20 m and L =5.5 km.

3.1. Waves

We assume that the far-field boundary condition for the incoming waves is steady and
independent of y. As the reference bottom topography is also independent of y, the
incoming reference wave varies only in x. The frequency σ is constant throughout the
domain. The scalar wavenumber k(x) is obtained from the water depth H (x) using
the implicit relationship σ 2 = gk(x) tanh(k(x)H (x)). θ and |A|2 are found by solving
the relationships

∂θ

∂x
=

σ tan(θ(x))

|CCCg| sinh(k(x)H (x))

∂H

∂x
,

|A|2(x) =
|CCCg∞| cos(θ∞)

|CCCg(x)| cos(θ(x))
|A|2∞,

where CCCg∞, θ∞ and |A|2∞ are the group velocity, angle, and amplitude-squared of the
incident waves in the far field, respectively. Because the vertically averaged Stokes
drift is a wave quantity, its reference state is also independent of y.

Unless stated otherwise we assume an orbital velocity σ = 0.63 s−1 and an incoming
wave height of 0.8 m. This gives a wavenumber around 0.055 m−1, wave orbital
velocity on the order of 50 cm s−1 and a Stokes drift on the order of 2 cm s−1.

3.2. Currents

We assume that a steady wind stress acts only in the y-direction and τττ = (0, τy). We also
assume that the sea elevation includes a small linear alongshore variation representing
a pressure gradient that drives the alongshore flow, ζ c = ξ (x) + sy. Consistent with
Long Island we take τy = −0.0004 m2 s−2 and s =2×10−7 mm−1. Thus, the alongshore
velocity is forced by a wind in the negative y-direction and a pressure gradient. As
τy and s are oppositely signed the two forces act in unison. In this case the wind
stress is the primary driver of the current, with the pressure gradient only playing a
secondary role. This value of τ represents a wind of 11.5 m s−1 at 10 m according to
the formula in Csanady (1982). Over the length scales of interest the sea elevation
only varies by at most a centimetre and so is small compared to the water depth.
This justifies assuming H + ζ c ≈ H in most cases.

Apart from the pressure gradient we assume that all other reference-state current
variables are independent of y. In the cross-shore direction we assume a simple
anti-Stokes flow, i.e. U (x) = −USt(x). Given these assumptions, we may calculate the
alongshore reference velocity V (x) from the longshore momentum equation (2.1),

V (x) =
τy − gsH (x)

r(x)
.

Thus the offshore velocity is of the order of U ∼ 2 cm s−1 and the alongshore velocity
is of the order V ∼ 40 cm s−1.

The sea elevation is determined by the cross-shore (x) component of (2.1),

∂

∂x

(
gξ + gG +

USt2

2

)
= f (V + V St) + V St ∂V

∂x
+

rUSt

H
,
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where ξ (x) is chosen so as to balance these terms. Over the area of interest ξ varies
over a couple of centimetres.

These values give sediment fluxes of the order of Qb ∼ 2×10−5 m2 s−1 and Qs ∼ 1×
10−4 m2 s−1, in line with the values reported in Calvete et al. (2002). The morphologic
time scales are Tms ∼ 60 years and Tmb ∼ 1600 years while the hydrologic time scale is
of the order of a few hours.

4. Linear stability analysis
4.1. Linear perturbation

The steady state is perturbed according to

(U, V ) = (−USt(x) + u, V (x) + v), ζ c = ζ c(x, y) + z, H = H (x) − h.

The bottom perturbation, h, also perturbs the waves:

θ = θ(x) + o, k = k(x) + p, |A|2 = |A|2(x) + q.

In the same manner that the wavenumber may be obtained from the bottom
topography, the wavenumber perturbation, p, is enslaved to the bottom perturbation.
The linear relationship between the two is p = −(∂k/∂H )h, where

∂k

∂H
= − 2k2

sinh(2kH ) + 2kH
.

Linearizing the equations for the wave-angle perturbation, o, and the wave
amplitude perturbation, q , gives

∂o

∂t
= Wooo + Wohh,

∂q

∂t
= Wqoo + Wqqq + Wqhh, (4.1)

where the five W-operators are given in the Appendix. In the absence of bottom
perturbations (i.e. h = 0), the wave perturbations, o and q , decay to zero. We may see
that these perturbations are enslaved to h by considering the case where h =0 (i.e.
there are no bottom perturbations) and showing that, in this case, the wave-angle
and amplitude perturbations are linearly decaying.

When h = 0 the equation for the wave-angle perturbation is

∂o

∂t
= Wooo.

The first two terms of Wooo are merely advection terms and the perturbation is
assumed to be zero out to sea and bounded for all y. The third and fourth terms
are the only ones that could cause instability. However, given our reference state,
sin(θ) and ∂θ/∂x always have the same sign and ∂H/∂x is always positive so that
wave-angle perturbations will always decay in the absence of bottom-topography
perturbations.

As the wave-angle perturbations decay when h = 0, we need only consider

∂q

∂t
= Wqqq

when determining the stability of the wave amplitude in the absence of bottom-
topography perturbations. Again, we will ignore the second term, which only
represents advection in the y-direction. This leaves

∂q

∂t
=

∂

∂x
[|CCCg| cos(θ)q] = − ∂

∂x

[
Cx

gq
]
.
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We are interested in whether the perturbation q grows or decays in time and thus
will consider q = q̂eλt , which gives

λq̂ = − ∂

∂x

[
Cx

g q̂
]
.

Taking Q(x) = Cx
g q̂ this becomes

∂Q

∂x
= −λ

Q(x)

Cx
g

= λ
Q(x)∣∣Cx

g

∣∣ ,

as Cx
g < 0. We may solve for Q, giving

Q(x) = Q(0) exp

(∫ x

0

λ∣∣Cx
g

∣∣ dx

)
.

However limx→∞ Q = 0 as Cx
g is bounded at infinity and limx→∞ q = 0. This means

that λ must be negative and hence q must decay with time.
Thus, in the absence of bottom perturbations the wave perturbations decay to zero.

So all wave perturbations are enslaved to the bottom perturbations. Furthermore, the
time scale for wave evolution is shorter than the time scale for the bottom topography.
Thus, we assume that these adjustments are essentially instantaneous and solve for o

and q as linear functions of h by setting the left-hand side of (4.1) to zero.
The linearized equations of perturbations of the currents, sea elevation and bottom

topography are

∂u

∂t
= Muuu + Muvv + Muzz + Muhh + Muoo + Muqq,

∂v

∂t
= Mvuu + Mvvv + Mvzz + Mvhh + Mvoo + Mvqq,

∂z

∂t
− ∂h

∂t
= Mzuu + Mzvv + Mzzz + Mzhh + Mzoo + Mzqq,

1

α

∂h

∂t
= Mhuu + Mhvv + Mhzz + Mhhh + Mhoo + Mhqq,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

where the M-operators are given in the Appendix. Equation (4.2) may be written in
matrix form as

B
∂

∂t
nnn = Mnnn, (4.3)

where

B =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

α

⎤
⎥⎦ , nnn =

⎡
⎢⎣

u

v

z

h

⎤
⎥⎦ , (4.4)

and M(x, ∂/∂x, ∂/∂y) is a differential operator in x and y. The dependence on o, q

and k is suppressed here because they can be represented as linear functions of h, as
mentioned above.

In deriving the linearized bottom topography equation Calvete et al. (2002) ignored
feedback terms from the topography to the wave orbital velocity (i.e. terms of
the form ∂uw/∂H , ∂uw/∂A, and ∂uw/∂k). These feedback terms arise through the
parameterization in terms of the orbital velocity in (2.5) and (2.6) and are given by
(A 3) and (A 4). In order to compare the addition of the vortex force and Bernoulli
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head terms to the model of Calvete et al. (2002) we also ignore these terms in most
of the following. However, in § 5.4 we address how the results change by the inclusion
of these terms.

If we assume

nnn(x, y, t) = n̂nn(x, Ky)e
λt+iKyy,

for λ ∈ C, Ky > 0, then we may rewrite (4.3) as the eigenvalue problem

Bλn̂nn = M
(

x,
∂

∂x
, iKy

)
n̂nn, (4.5)

with Ky as a parameter.
We assume that the perturbations decay to zero for sufficiently large x and use this

condition in the eigenvalue problem (4.5). The boundary condition at the shore end for
the velocity is the linearization of U (0) = −USt(0). For the bottom topography either
Dirichlet, h(0) = 0, or Neumann, ∂h/∂x|x=0 = 0, boundary conditions are prescribed.
Dirichlet boundary conditions represent the situation where the bottom-topography
perturbation is zero at the shoreward boundary. Neumann boundary conditions do
not fix the perturbation at x = 0 but rather specify that the flux is zero at this
boundary (it follows from setting QQQ ··· nnn = 0 along with U (0) + USt(0) = 0). Recalling
that the water has depth H0 at x = 0, we consider this the edge of the domain of
interest and not the shoreline. This allows for the possibility that the perturbation may
not disappear at this point. Previous studies have used the former of the above two
boundary conditions and unless stated otherwise, so do we. We take the opportunity
in this study to investigate how the results are affected by this alternative boundary
condition as it is not obvious what physical mechanism would hold the perturbation
at zero at the shoreward boundary.

We solve (4.5) for eigenvalues λ(Ky), and eigenfunctions n̂nn(x, Ky), using a rational
Chebyshev method as described in Boyd (1987, 1989), Iranzo & Falques (1992)
and Boyd, Rangan & Bucksbaum (2003). The equations are solved for 200 and
300 collocation points and the results compared to eliminate spurious eigenvalues as
outlined in Boyd (1996). We use L as the spacing parameter for the collocation points.

For a given Ky , an eigenfunction solution represents a mode with a periodicity
2π/Ky in y with a growth rate given by the real part of λ, Re(λ). Re(λ) positive
(negative) indicates a growing (decaying) solution. A positive (negative) imaginary
part of λ, Im(λ), indicates that the mode advects in the negative (positive) y direction
with celerity |Im(λ)|/Ky .

The ratio of the hydrodynamic time scale to the morphological time scale, α, in
B is small (10−7 for the bed load and 10−5 for the suspended load morphological
time scales). Previous studies have exploited this disparity in time scales to justify
approximating B by

B =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎦ (4.6)

(note that there is a factor of α difference between these eigenvalues and those of the
full problem). We call this the adiabatic approximation.

We know from Calvete et al. (2002) that for limα → 0 and with consideration
of currents only (waves appearing only in parametric form) the solutions are
morphologically similar to shore-connected ridges. Using the adiabatic approximation,
the problem collapses to an eigenvalue problem in one variable, h. It implies that,
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in the absence of changes in bottom topography, the flow is stable. As the bottom
topography changes, the flow relaxes to a slightly perturbed flow to account for
these changes. In the adiabatic approximation the eigenvalue problem represents a
situation wherein this relaxation happens instantaneously when compared with the
morphological time scale. However, if the equilibrium flow were to lose stability due
to changes in the bottom topography this approximation would no longer be valid
as the unstable eigenvalues associated with the flow would be suppressed by this
simplification.

Furthermore, for some equilibrium flows and bottom topographies the adiabatic
approximation may be appropriate, while for others it may not, i.e., setting α to zero is
only justified if doing so does not artificially suppress instabilities. The consequences
of these unstable degrees of freedom being significant might be, among other things,
that the predicted shore-connected ridges are different from those observed in the
physical setting. Restrepo (2001) attempted to settle this issue but this crucial aspect of
the model remains open. Below we determine, for the particular equilibrium solution
in question, whether waves are present or not, and how large α can be before the
solutions deviate significantly from those obtained by Calvete et al. (2002).

4.2. Questions of interest

We will use the linear stability analysis to investigate the following questions:
Waves versus no waves

Using our equations, we investigate how the presence of waves affects the results
obtained when currents alone compose the velocity field of the fluid. Note that we
are only considering the conservative wave effects of the vortex force, Bernoulli head
and Stokes drift (equivalent to the radiation stress terms). The model already includes
parameterizations for the bottom friction and sediment transport that are based on
the wave orbital velocity. We do not investigate changes to these parameterizations.
When we refer to the no-wave case this still includes the bottom friction and sediment
transport parameterizations as given by Calvete et al. (2002).

Wave parameters θ∞, |A|∞, σ

We investigate how changes in the angle of incidence, amplitude and frequency of the
waves are manifested in the topography of the erodible bed.

Boundary conditions
We investigate how the numerical calculation of the eigenfunctions depends on the
choice of boundary condition on h at x = 0. In particular, we compare setting h to
zero at x = 0 (Dirichlet), to setting dh/dx to zero (Neumann). These represent no
perturbation and no perturbation flux at the x = 0 boundary respectively. Following
Calvete et al. (2002), our default boundary condition is the Dirichlet condition.

Adiabatic assumption
We determine a range of parameter values for which the adiabatic assumption is
justified for the particular equilibrium solution that leads to shoreface-connected
ridges and see how dropping this assumption changes the outcome of the linear
stability analysis.

Wave mechanisms
We compare models with different levels of feedback to attempt to isolate the
mechanisms by which the waves affect the outcome of the calculations. We also
characterize the convergence/divergence of the waves and currents, a phenomenon
that is instrumental in the evolution of the bottom topography and the formation of
shoreface-connected ridge structures.
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Parameter Value Units Description

H0 14 (m) Depth at shore end
H∞ 20 (m) Depth out to sea
L 5.5 (km) Horizontal length scale
β 1.1 × 10−3 (m/m) Bottom slope = (H∞ − H0)/L
f 9.3 × 10−5 (rad s−1) Coriolis parameter
νs 1.0 × 10−3 s3 m−3 Coefficient, suspended-load transport
νb 1.8 × 10−4 s2 m−3 Coefficient, bed-load transport
λs 2.5 (s2 m−1) Smoothing, suspended load
λb 0.7 Smoothing, bed load
s 2 × 10−7 (m m−1) A longshore sea elevation slope
r̂ 2.4 × 10−3 Bottom friction
τy −4.0 × 10−4 (m2 s−2) Kinetic surface stress

|A|∞ 0.8 (m) Incoming wave amplitude
θ∞ (rad) Incoming angle of incidence
σ π/5 (rad s−1) Frequency

Table 1. Reference values for bottom topography, currents, and waves; values are consistent
with those used in Calvete et al. (2002) with adjustments made because of the different
parameterization of the wave orbital velocity. Unless otherwise stated these are the values that
are used in the numerical calculations. Note that λb and r̂ are dimensionless parameters.

4.3. Results and analysis

We focus on the example of the ridges that form off Long Island, on the East Coast
of the USA. When waves are suppressed the parameters are chosen to agree with
those in Calvete et al. (2002). The agreement is not exact as they used a formula for
wave orbital velocity based on bottom depth whereas we calculate it directly from the
wave parameters according to (2.7). The general results, however, are still consistent
with the Long Island setting with a longshore spacing of 4.3 km and an e-folding
time of 125 years, giving a celerity of 1.9 myr−1 in the direction of the steady flow.
While the effects of the waves alter these somewhat they are still within the range of
reasonable solutions.

Unless otherwise stated, we assume the parameters are as given in table 1. Although
the prevailing direction for the peak of the wave spectrum is around π/18 for Long
Island we consider a range of incoming wave direction to explore the full range of
possible effects of waves. Recall that 0 < θ∞ < π/2 means that the waves come toward
the shore from the north and east directions as depicted in figure 1. These waves are
coming in in the same direction as the longshore current. For −π/2 < θ∞ < 0 the
waves are coming in against the current (because we consider swell waves it need not
be a contradiction to have waves coming in in the opposite direction to the prevailing
wind).

Figure 2 shows the growth rate as solid lines plotted against the non-dimensionalized
alongshore wavenumber of the instability KyL, for various angles of incidence θ∞. In
all cases |A|∞ = 0.8 m. For comparison, the growth rates for the ‘no-waves’ case are
shown as dashed lines, superimposed on all the wave cases.

Waves coming in at steeper angles have a larger effect on the growth rates than
waves close to normally incident. For θ∞ = π/4 the peak growth rate of the fastest
growing mode is shifted to a lower alongshore wavenumber (Ky). The instabilities with
higher alongshore wavenumber are suppressed to a greater extent and the relative
position of the modes changes with the alongshore wavenumber. For waves that are
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Figure 2. Growth rate (yr−1) as a function of KyL for different angles of incidence of the
waves. The dashed lines represent the outcome when the waves are suppressed. The waves
have an incoming amplitude |A|∞ = 0.8 m.

still coming in with the current but more normally to the shore there is less change
in the growth rate. The growth rate of the fastest growing mode is slightly enhanced.
Some of the more slowly growing modes have their growth rate suppressed. For waves
coming in close to normal there is not much change in the growth rates, although
the fifth unstable mode from the no-wave case is stable even for these values of
θ∞. For waves that come in at a steep angle from normal, against the current, the
growth rate is suppressed and the fastest growing mode is shifted to lower alongshore
wavenumber.

Figure 3 shows the first three unstable modes for the no-wave case (first column)
and the wave cases for different values of θ∞ for alongshore wavenumber of KyL = 8
(which has the peak growth rate for the no-wave case). The most striking feature
of the unstable modes for waves with θ∞ positive is the number of modes that are
long narrow features forming at an acute angle with the shoreline, very similar to
shoreface-connected ridges. Without the waves, the first mode has this feature but all
the subsequent modes are patchy with the second mode having two layers of patches,
the third, three and so on (see the first column of figure 3). For waves coming in
against the current but close to normally incident the patchy modes are stretched
out similarly to the case with θ∞ positive. For θ∞ < 0 and coming in at a steeper
angle with the shore they are closer to the patchy modes of the no-wave case. For
θ∞ = −π/18 the modes are transitional between patchy and stretched out, while for
θ∞ = −π/4 the modes can be seen to be similar to the no-waves case.

Thus for θ∞ = π/18 (the peak wave direction for Long Island), the modes form
long thin ridges at a steep angle with the shore. Thus, the waves significantly alter
the unstable modes with smaller growth rates. The waves have less effect on the
first unstable mode, which always was linear, up-current-rotated ridges. Nonlinear
modelling of the sediment problem in Calvete et al. (1999), however, suggests that
the lesser unstable modes may also be important in explaining the final bottom
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Figure 3. Largest three unstable modes for peak growth rate for the no-wave case and also
for waves with angle of incidence θ∞ = π/4, π/18, −π/18 and −π/4. For θ∞ = π/4, the third
mode is a wave-induced mode that is stable when wave effects are not included. Incoming
wave amplitude is |A|∞ = 0.8 m. The shoreward end is the left side of the rectangles. The axes
have dimensions of km. Dashed lines represent negative contours.

topography after the instability has saturated. Thus, this change in the shape of the
mode due to waves may enhance the formation of shoreface-connected ridges.

Waves with positive θ∞ also push the unstable modes further onshore so that there
is a steeper drop-off to zero at x = 0 and the modes do not extend as far offshore. For
large positive values of θ∞ (shown for θ∞ = π/4 in figure 3) there is a very different
mode: the third most unstable mode. It is slightly up-current rotated but much closer
to normal to the shoreline than any of the other modes. We call this the wave-induced
mode. For smaller values of θ∞ this mode becomes stable.

Figure 4 shows the effect of the waves on the celerity of the fastest growing mode as
a function of KyL. The waves tend to increase the celerity when they are coming in the
same direction as the current (i.e. θ∞ > 0). Waves coming in at a steep angle can alter
the celerity by several metres per year. For θ∞ < 0 the effect is not as strong; in this
case figure 4 shows the celerity being increased for low alongshore wavenumber and
very slightly decreased for higher alongshore wavenumber. As observed in Calvete
et al. (2002), the suspended-load term of the sediment transport basically drives the
instability whereas the bed-load term ensures that it has the correct celerity. Based on
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Figure 4. Celerity (m yr−1) of fastest growing mode for waves with an angle of incidence of
θ∞ = ±π/4, ±π/8, ±π/18. (Positive values make the instability travel faster in the downstream
direction.) Diamonds indicate what the celerity would be if it were strictly proportional to the
Stokes drift for positive angles of incidence.

this we look at how the waves affect the two components of the sediment transport
separately to understand their overall effect on the equations. For the suspended load
only, the celerity of the instabilities is actually oppositely signed, i.e. the ridges travel
upstream, in the opposite direction to the current. When waves travelling in the same
direction as the current are included in the model the celerity becomes negative so
that the instability moves in the same direction as the current. For waves coming in
at θ∞ = π/4, the celerity is of the order of 2 myr−1, in line with the observed ridge
celerity. For waves coming in nearly perpendicular to the shore the effect is not as
strong, however. This makes sense in terms of the suspended sediment being advected
by the Stokes drift in addition to the current. However when the waves are against
the current, i.e. θ∞ < 0, the effect is far weaker, i.e. the sediment is not slowed by a
similar amount to that which it is enhanced by waves and currents acting in unison.
The effect of the waves on the bed load is primarily related to the angle of the waves.
Waves that come in at a steep angle slow the advection of the instability irrespective
of whether they are with or against the current. Waves that come nearly perpendicular
to the shore have a smaller effect. There is a secondary effect due to the longshore
Stokes drift. The overall celerity of the full model can be seen as a combination of
these two effects. The changes in the celerity for θ∞ < 0 are less pronounced than
the changes for θ∞ > 0. For θ∞ > 0 the celerity is always enhanced by an amount
roughly proportional to the longshore Stokes drift; whereas for θ∞ < 0 the celerity is
sometimes slowed and in other instances enhanced.

When the waves are very small (say |A|∞ = 0.1 m and below) they have little effect
on the outcome, compared to the no-wave case (recall that the no-wave case still
includes the full effects of the wave orbital velocity on bottom friction and sediment
transport). For θ∞ = π/18 there is only a small difference between the growth rates
with and without waves (see figure 2). As |A|∞ increases the growth rate shifts from the
no-wave case to the wave case. The two fastest growing modes are slightly enhanced
and the other modes are slightly suppressed; the fifth unstable mode is suppressed.
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Figure 5. Growth rate (yr−1) as a function of KyL and incoming amplitude of the waves
|A|∞. The dashed lines represent the instabilities due to currents alone. The angle of incidence
of the waves is fixed at θ∞ = π/4.

For other (albeit less realistic) values of θ∞ there are more noticeable changes.
Figure 5 shows how the amplitude of the waves affects the growth rate of the instability
for waves coming in at an angle of θ∞ = π/4. As the height of the incoming waves in-
creases some of the modes are suppressed at higher longshore wavenumbers while oth-
ers are enhanced. The peak growth rate moves towards smaller longshore wavenum-
bers and for |A|∞ = 0.6 m it is for longshore wavenumber of around Ky = 6/L.

As the wave amplitude increases, say |A|∞ = 1.5 m, the waves tend to smooth
modes with higher alongshore wavenumbers while increasing the growth rate of those
modes which remain unstable. The most unstable mode is shifted to lower alongshore
wavenumbers and the higher alongshore wavenumber instabilities are suppressed.
Note that for |A|∞ = 1.5 m, the wave slope ε = k|A| is around 0.1 and thus the wave
equations derived in MRL04 remain valid.

For increasing values of the incoming wave amplitude the modes shift from the
no-wave modes (where the second, third, fourth and fifth modes are ‘patchy’ – see the
first column of figure 3) to the modes with waves (the remaining columns of figure 3).
For waves coming in close to perpendicular to the shore this means that the patchy
modes stretch out and align to form the long thin up-current-rotated modes. Thus all
the unstable modes are up-current-rotated ridges in this case. For θ∞ = π/4 the wave-
induced mode becomes unstable for larger values |A|∞ and increases in prominence.

In the numerical calculations reported here we set the wave period to 10 s but
periods of 7, 15 and 20 s were also considered. There is little qualitative change in
the linear stability analysis for period variations within this range. Interestingly, the
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Figure 6. Reference and perturbation bottom topography for the three fastest growing modes
for Dirichlet (top) and Neumann (bottom) boundary conditions on h at x = 0. θ∞ = π

18
,

|A|∞ = 0.8 m and KyL = 8.

amplitude of the waves with a period of 7 s decreases as the waves come inshore at
this depth while for periods of 10 s and above the waves are shoaling and so their
amplitude increases. This does not appreciably affect the solutions, though, because
the wave orbital velocity and Stokes drift still increase with decreasing depth due
to the changes in the other parameters. The wave-induced mode is slightly more
prominent for a period of 7 s and the effect on the celerity is closer to being purely
that of advection by the Stokes drift. These are all fairly small changes however.

Changing the boundary condition for h at x = 0 from Dirichlet to Neumann
affects the morphology of the instabilities close to the shoreline. The growth rate of
the stability is not strongly affected, nor is the celerity. Figure 6 shows the first three
unstable modes for both Dirichlet and Neumann boundary conditions. The reference
bottom topography is shown in addition to the perturbation, giving an idea what a
bathymetric map of how these perturbations would look. For the Dirichlet boundary
conditions the modes sometimes have a small boundary layer near x = 0 where they
dip down to zero at x = 0. Because this is not fixed in the case of the Neumann
boundary conditions there are still small longshore oscillations in the modes at x = 0.
This difference is most obvious for the cases with waves coming in with the currents
(θ∞ > 0) as the modes are pushed up against the shoreline. Apart from this alteration
near the shoreline, the gross features of the instabilities remain unchanged. The
robustness of the solutions to the different boundary conditions suggests that the
eigenfunctions are a genereal feature of the system and not strongly tied to details in
the boundary set-up.

To test the adiabatic approximation we considered the full problem using B as given
by (4.4) rather than by (4.6). The results from the full problem were not significantly
different from the reduced problem, which confirms that the adiabatic approximation
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is a reasonable assumption. For α up to around unity similar results were obtained.
When α was larger than this the unstable growth rate began to decrease and the wave
effect became less pronounced but the up-current-rotated bars were still unstable. This
suggests that even if the morphological time scale were similar to the hydrodynamic
time scale instabilities in the bed-form like those shown here would still occur.
Furthermore, when the bottom topography is held constant (i.e. h = 0), the current
solution is found to be linearly stable. Thus, the current perturbations are enslaved
to the bottom topography. The addition of waves does not change this stability.

5. Wave effects
In order to better understand the effect that waves have on the bottom topography

we ran several experiments:
(i) No forced current. We consider the effect of the waves when the wind stress

and pressure gradient are both set to zero.
(ii) Wave pathways. We investigate the different pathways by which the waves

affect the erodible bed.
(iii) Convergence. We look at the convergence patterns of the waves and currents

and correlate them with the bottom topography patterns.
(iv) Feedback of wave orbital velocity. We consider how the instability is affected

if the feedback of the wave orbital velocity is included.

5.1. No forced current

We consider what happens when the wind stress τττ and pressure gradient s are both
set to zero. Without the waves the current is zero. The addition of the waves drives a
cross-shore flow that balances the cross-shore Stokes drift. The longshore flow is zero.
The only net movement of particles is in the longshore direction due to the longshore
Stokes drift.

Both of these cases (with and without waves) are linearly stable, with the real parts
of all the eigenvalues negative for all wavenumbers and modes. The addition of the
waves does not significantly alter this, although it does change the decay rates and
adds a longshore migratory component to the decay.

The fact that the waves by themselves only smooth the bottom topography suggests
that the wave-induced instability that occurs for θ∞ large and positive (see figure 3)
is not simply a wave instability but must also be due to some interaction with the
currents.

5.2. Wave pathways

As illustrated in figure 7, there are three pathways by which the conservative waves
effects can change the evolution of the erodible bed. These are:

(1) The original addition of the equilibrium wave solution to the current and its
effect on the perturbations of the current and the bottom topography. We refer to
this as the primary wave effect.

(2) The perturbation of the bottom topography affects the waves. This can cause
convergences of the Stokes drift, which in turn affects the bottom topography. We
call this the direct wave feedback.

(3) The wave perturbation also feeds back into the bottom topography indirectly.
The wave perturbation alters the current perturbation, which in turn alters the bottom
topography perturbation. We call this the indirect wave feedback.
In order to understand the effects of these three pathways, we ran three numerical
experiments where we shut off different pathways. In the first experiment we keep the
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Figure 7. Schematic diagram of how variables influence each other. (1), (2) and (3) are the
three pathways by which the waves influence the erodible bottom corresponding to those
described in the text.

primary wave effect but assume that there is no feedback from the bottom topography
to the waves, i.e. we retain pathway (1) but remove pathways (2) and (3). The second
experiment allows feedback from the erodible bed to the waves and back, but only
directly, via the convergence of the Stokes drift, i.e. we keep pathways (1) and (2)
but remove pathway (3). The only feedback in the third experiment is indirect, via
the current perturbations, i.e. we keep pathways (1) and (3) but remove pathway (2).
Note that, because it does not make sense to have a wave perturbation without first
having a wave, we do not consider cases where we have wave feedback (pathways (2)
and (3)) without having the primary wave effect (pathway (1)).

When only pathway (1) is incorporated into the model the growth rates of the
unstable modes are decreased. As in the full case the strongest effect is seen for waves
coming in at steep angles but with only pathway (1) the suppression is seen for all
waves angles whereas when the other feedbacks are incorporated the growth rates of
some of the modes are enhanced by the waves (especially waves coming in closer to
normal but with the current). The shapes of the unstable modes, however, are almost
exactly the same as without the waves in this case and there is no wave-induced mode
for any values of θ∞. The celerity is slowed slightly for waves coming in at a steep
angle (positive or negative) but there is very little change for waves coming in closer
to perpendicular to the shore.

When the primary wave effect and one or the other feedback are incorporated into
the model it is not as stable as when both the feedbacks are included or neither
of them. With pathways (1) and (2) the growth rates are similar to those observed
for the full wave model; however some of the higher frequencies have large growth
rates but these may just be spurious. The unstable modes in this case are similar
to the stretched modes seen in the full case and the wave-induced mode is seen for
large positive values of θ∞. If anything the second and third modes are slightly more
stretched out than in the full model, especially for waves with θ∞ negative. The celerity
is increased slightly for all values of θ∞. For pathways (1) and (3) the growth rates
are again not affected much except for large values of θ∞ where they are somewhat
suppressed. The modes are also little changed from the no-wave case although for θ∞
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positive they are very slightly more stretched out. There is no wave-induced mode.
The celerity is decreased slightly for all values of θ∞.

Thus, most of the effects of the waves are caused by the direct feedback of the
waves into the bottom topography equation (i.e. recognizing that tracers are advected
by the Lagrangian current rather than the Eulerian current). The primary wave effect
alters the growth rate of the instabilities somewhat but does not affect the shape of
the modes nor does it induce any new instabilities. The indirect feedback has little
effect in itself but does stabilize the problem and give better numerical solutions when
it is included. The celerity seems to be affected differently by the different features of
the waves. The full effect of the waves on the celerity seems to be a blend of these
differing effects.

5.3. Convergence

The bottom-topography evolution equation has two components: a convergence
term and a diffusion term. The diffusion term represents smoothing of the bottom.
Moreover, it is physically significant as it sets a length scale for the ridges. Instabilities
occur due to the convergence term which is related to the convergence of the current
(and Stokes drift) but modified by the wave orbital velocity, i.e. −∇⊥ ··· (cb|uw|2 +
cs |uw|3H )(VVV + VVV St), where cb = νbH0/U 2

w0 and cs = νs/U 3
w0 (Our model differs from

that of Calvete et al. (2002) in that the convergence term includes both the current
and the Stokes drift). In order to understand the way that the waves change the
shapes of the existing modes and enhance the wave-induced mode we look at these
convergences, both of the current and Stokes drift and of the sediment transport
related to these quantities. In the linear stability analysis the sediment transport
convergence becomes

∂

∂x
[−K(x)(u + dUSt)] +

∂

∂y
[−K(x)(v + dV St) + cs |uw|3(V + V St)h],

where

K(x) = cb|uw|2 + cs |uw|3H,

and we assume that the wave components are enslaved to h, i.e. dVVV St = (dVVV St/dh)h,
where

dVVV St

dh
=

∂VVV St

∂k

∂k

∂h
+

∂VVV St

∂θ

∂θ

∂h
+

∂VVV St

∂ |A|2
∂ |A|2
∂h

− ∂VVV St

∂H
.

Note that, as discussed in § 4.1, it is also possible to include the feedback of the bottom
topography on the wave orbital velocity by including the ∂ |uw|/∂h terms given at the
end of the Appendix. The addition of these terms is discussed in § 5.4.

The expressions for the Stokes drift perturbation with respect to changes in the
wave quantities and the depth are

∂VVV St

∂k
= −g|A|2

2σ

(
cos θ

sin θ

)
,

∂VVV St

∂θ
=

g|A|2k
2σ

(
sin θ

− cos θ

)
,

∂VVV St

∂ |A|2 = − gk

2σ

(
cos θ

sin θ

)
,

∂VVV St

∂H
=

g|A|2k
2σH 2

(
cos θ

sin θ

)
.

The wavenumber is affected by perturbations in the bottom topography according to

∂k

∂h
= − ∂k

∂H
=

2k2

sinh(2kH ) + 2kH
.
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Figure 8. No-waves case, KyL = 8. Top: first mode, bottom: third mode. (a) Contours
show bottom topography perturbation (dashed lines negative) and arrows show current
perturbations. (b) Convergence of current perturbations (∇ ··· uuu). (c) Convergence of sediment
transport perturbations (∇ ···K(xxx)uuu) (solid lines indicate convergence, dashed lines divergence).

Likewise for θ and |A|2,
∂θ

∂h
= −W−1

oo Woh,

∂ |A|2
∂h

= −W−1
qq

[
Wqh − Wqo

(
W−1

oo Woh

)]
,

where the W operators are given in the Appendix. These last two partial derivatives
are notable in that they depend upon differential operators and their inverses and
must be evaluated numerically.

In the no-waves case, the plot of the current convergence looks similar to the bottom
topography, save for a phase shift (see figure 8). The flow diagram shows the cur-
rents being deflected offshore over the ridge crests. As mentioned by Trowbridge
(1995) and Falques et al. (1998b), the offshore deflection is balanced by a convergence
of flow. The maximum current convergence happens approximately a quarter of a
period downstream from the ridge crest. The sediment transport is linearly related
to the current with a coefficient that is a function of the wave orbital velocity.
Convergence of the sediment transport occurs closer to the crest than that of the
current (see figure 8b, c) but still slightly downstream. This causes the ridge to grow
beyond its crest, i.e. the flow scours sand from the upstream side of the ridges and
deposits it on the downstream side. Thus the ridges are advected downstream as they
develop. For the patchy modes the current is also pushed offshore over the humps
and shoreward over the depressions. The current convergence over the shorewardmost
bump is further downstream than over the outer bumps. Again the sediment transport
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Figure 9. First mode, θ∞ = π/18, |A|∞ = 0.8 m, KyL = 8. (a) Bottom topography perturbation
(dashed lines negative). (b) Current convergence (contours) and current perturbations
(arrows). (c) Stokes drift convergence (contours) and Stokes drift perturbations (arrows).
(d) Total sediment transport convergence. (e) Sediment transport convergence due to current.
(f ) Sediment transport convergence due to Stokes drift (solid lines indicate convergence,
dashed lines divergence).

convergence is closer to the humps than the current convergence but still downstream
of the crests.

When the waves are added both the current and the Stokes drift need to be
considered (see figures 9 and 10 for the current and Stokes drift perturbation and
corresponding sediment transport convergence). For the ridge-like modes (the original
first mode and the long thin modes that form from the patchy modes in the presence
of waves with positive angle of incidence), the situation for the currents is still very
similar to no-waves case, i.e. the current is pushed offshore over the ridges and the
maximum convergence occurs approximately a quarter of a period downstream of
the crest of the ridge. The Stokes drift perturbation is most prominent near the shore.
The Stokes drift is deflected shoreward over the ridges towards the upstream side, and
is enhanced (flowing shoreward) over the top of the ridge and just upstream of the
ridge at the shoreward edge of the domain. Where the ridge begins at the shoreward
side the Stokes drift is decreased through sheltering, which causes convergence.

The convergence of the Stokes drift is five to ten times smaller than that of the
currents (note that the Stokes drift itself is a factor of ten smaller than the alongshore
current when |A|∞ = 0.8 m). However, the sediment transport convergence due to the
current and the Stokes drift are comparable in size but out of phase; the sediment
transport due to currents being about a quarter phase downstream of the ridges
whereas the sediment transport convergence due to the Stokes drift has a maximum
slightly upstream of the ridge crest. The total convergence is thus smaller (on the same
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Figure 10. As figure 9 but for third mode.

order as the no-wave case). It is positioned with its maximum slightly downstream
of the ridge crest. (Note that the contour scale for the convergence is the same
for figures 8, 9 and 10 for ease of comparison.) Thus, although the Stokes drift is
considerably smaller than the current it is just as important in forming the stretched
out up-current-rotated ridges. The incoming waves tend to align the ‘patchy’ modes
into long thin up-current-rotated ridges. There is also considerable sediment transport
convergence near the shore which explains why the ridges are pushed closer up against
the shore with the inclusion of the waves.

5.4. Inclusion of wave orbital velocity feedback terms

As mentioned in § 4, the feedbacks that we have included here are simply those that
affect the conservative wave effects (i.e. the vortex force and the Bernoulli head).
The model also includes non-conservative wave effects through the bottom friction
and sediment flux parameterizations based on the wave orbital velocity (Calvete
et al. 2002). Changes in the bottom topography would also affect the wave orbital
velocity and thus would feed back into the equations through these parameterizations.
Following Calvete et al. (2002), these feedback terms in the linearization of the
bottom topography evolution equation and bottom friction were ignored (i.e. (4.2)
with coefficients given by (A 2) were used omitting the terms (A 3) and (A 4)). These
terms are proportional to derivatives of uw with respect to H , A, and k. In the case of
Calvete et al. (2001b, 2002) they are equivalent to the derivative of uw with respect to
H in their linearized bottom evolution equation and bottom friction term, and hence,
the outcomes that are discussed in what follows apply to them as well. A natural
question to ask is what happens when the terms are retained: are the results so far
discussed still valid?
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Figure 11. (a) Growth Rate (yr−1) as a function of KyL for a case with feedback to wave
orbital velocity included. (b) First three modes for KyL = 8. This is the no-wave case; however
the wave orbital velocity has |A|∞ = 0.8 and period of 10 s.

While the feedback into the bottom friction does not significantly affect the model,
the feedback into the bottom topography equation does, as shown in figure 11.
The parameters are the same as in figure 8. With the inclusion of these terms
all the instabilities are suppressed and the reference bottom is unchanged. The term
proportional to derivative of uw with respect to H (and thus θ , k and |A|2) overwhelms
the other convergence terms that were causing the instability. This general result also
holds for Calvete et al. (2001b) and Calvete et al. (2002).

The consequences of this outcome are that the parameterization of the fluxes in
terms of the wave orbital velocity is not correct, and that the model does not predict
shore-connected ridges for parameter values reflecting the oceanic setting. The way
the parameterization is made, however, appeals to common sense rather than physics,
and thus we would suggest that the model should not be discounted, but rather, that
the parameterization should be revisited.

6. Conclusions
This analysis shows that waves have a significant effect on the instability of the

bottom topography. The main effects are:
(i) The waves alter the shape of the unstable modes. For waves coming in nearly

perpendicular to the flow or with the flow, the patchy modes are stretched out into
long thin modes. The Stokes drift advects sand inwards forming the patches into
ridges. The mechanism behind this change seems to mainly involve the feedback of
the waves into the bottom topography. The indirect feedback through the currents
plays a lesser role. For θ∞ > 0 the waves also push the instabilities onshore. Although
the Stokes drift is considerably smaller than the current it plays a crucial role in the
divergence of the sediment transport term.

(ii) The waves change the celerity of the instability (i.e. affect Im(λ)). This appears
to be related to the advection as (at least for θ∞ > 0, i.e. the waves and current
travelling in the same direction) the affect on the celerity is nearly proportional to
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the alongshore Stokes drift. For θ∞ < 0 (i.e. the wave coming in against the currents)
this effect is less clear.

(iii) The waves may suppress or augment the instability, i.e. affect Re(λ), the growth
rate of the instability. They may also push the peak growth rate to longer alongshore
instabilities. This affect is small for moderate waves with angles of incidence close to
perpendicular to the shore.

(iv) For θ∞ large and positive (i.e. around π/4), the waves excite a completely
different instability and thus lead to morphology changes. This mode seems to be
related to the direct wave feedback into the bottom topography.

(v) Increasing |A|∞ simply causes shifts between the no-wave case and the wave
case. The changes are different depending on the incoming wave angle, θ∞.

(vi) The frequency σ (and hence also k) does not significantly affect the erodible
bed.

(vii) The choice of boundary condition for h at the shoreward end does not
significantly affect the morphology of the instabilities. The features of the eigen-
functions are altered slightly close to the onshore edge to accommodate the
specific boundary conditions. The Neumann boundary conditions follow from the
assumption that QQQ ··· nnn= 0 at x = 0 along with U (0) + USt(0) = 0. This condition, that
the shore-normal sediment transport is zero at the shoreward edge, is easier to
imagine than the situation where the bottom perturbation is held at a fixed value
(i.e. zero).

(viii) The adiabatic approximation is valid for the equilibrium solution studied
here: in fact even for values of α around 1 the solutions do not differ much which
suggests that these results may hold even if the morphological time scale is similar to
the hydrodynamic time scale. However, our analysis can only confirm this finding for
the particular equilibrium solution under consideration.

The addition of waves to the hydrodynamics significantly changes the bed-form
instability through altering the shape and celerity of the unstable modes, suppressing
or enhancing growth rates and in some cases introducing new unstable modes. These
changes are predominantly driven by the vortex force and Stokes advection. The
Bernoulli head plays a lesser role. How the instability is affected depends upon
the wave parameters, most significantly incoming-wave angle and wave height. These
differences may help explain why shoreface-connected ridges occur in some areas and
not others.

This paper assumes steady monochromatic unidirectional waves which is not
generally the case, especially in storm conditions. We are able to show, however,
that the effect of waves cannot be ignored.

Inclusion of the feedback to the wave orbital velocity suggests that there are
problems with this, at least in the parameterization of the sediment flux. If this model
is to continue to be used to explain the formation of shore-connected bars this issue
will need to be resolved.

There is general consensus that the ridges are greatly affected by storm-driven flows.
This scenario cannot be convincingly explored using a current-only hydrodynamic
model (the analysis in MRL04 suggests that wave effects cannot be merely
parametrized). Furthermore, there is no way to gauge how specialized the results
from a particular (though physically reasonable) equilibrium solution carry over to
the more general case, in which a hydrodynamic and sediment dynamic model would
evolve using temporal climatology. An analysis of the results from an evolutionary
model with forced climatology would be a logical next step. Future work will look at
the questions of unsteady forcing and more general wave climates.
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Appendix. Terms in linear stability calculations
Here we give the coefficients for equations (4.1) and (4.2). The coefficients for the

wave equations (4.1) are

Wooo = |Cg|
(

cos(θ)
∂o

∂x
+ sin(θ)

∂o

∂y

)
−

(
|Cg| sin(θ)

∂θ

∂x
+

σ cos(θ)

sinh(2kH )

∂H

∂x

)
o,

(A 1a)

Wohh =

(
−

(
∂ |Cg|
∂k

∂k

∂H
+

∂ |Cg|
∂H

)
cos(θ)

∂θ

∂x

− 2((∂k/∂H )H + k)σ cosh(2kH ) sin(θ)

sinh2(2kH )

∂H

∂x
− σ cos(θ)

sinh(2kH )

∂

∂y
+

σ sin(θ)

sinh(2kH )

∂

∂x

)
h,

(A 1b)

Wqoo = − ∂

∂x
[|Cg| sin(θ)|A|2o] + |Cg| cos(θ)|A|2 ∂o

∂y
, (A 1c)

Wqqq =
∂

∂x
[|Cg| cos(θ)q] + |Cg| sin(θ)

∂q

∂y
, (A 1d)

Wqhh = −
(

∂ |Cg|
∂k

∂k

∂H
+

∂ |Cg|
∂H

)
sin(θ)|A|2 ∂h

∂y

− ∂

∂x

[(
∂ |Cg|
∂k

∂k

∂H
+

∂ |Cg|
∂H

)
|A|2 cos(θ)h

]
. (A 1e)

The linear coefficients for the linearized momentum, mass and bottom topography
equation are

Muuu = − r̂ |uw|
H

u +
∂

∂x

[(
− ∂G

∂U
+ USt

)
u

]
− (V + V St)

∂

∂y
u, (A 2a)

Muvv = f v + V St ∂v

∂x
− ∂

∂x

[
∂G
∂V

v

]
, (A 2b)

Muzz = − r̂ |uw|USt

H 2
z − g

∂z

∂x
, (A 2c)

Muhh =

[
− r̂ |uw|U

H 2
+

r̂U

H

(
∂ |uw|
∂H

+
∂ |uw|
∂k

∂k

∂H

)
−

(
f +

∂V

∂x

) (
∂V St

∂k

∂k

∂H
+

∂V St

∂H

)]
h

+
∂

∂x

[(
∂G
∂k

∂k

∂H
+

∂G
∂H

)
h

]
, (A 2d)
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Muoo =
∂V St

∂θ

(
f +

∂V

∂x

)
o − ∂

∂x

[
∂G
∂θ

o

]
, (A 2e)

Muqq = − r̂U

H

∂ |uw|
∂ |A|2 q +

∂V St

∂ |A|2

(
f +

∂V

∂x

)
q − ∂

∂x

[
∂G

∂ |A|2 q

]
, (A 2f )

Mvuu = −
(

f +
∂V

∂x
+

(
∂G
∂U

− USt

)
∂

∂y

)
u, (A 2g)

Mvvv = −
(

r̂ |uw|
H

v +

(
V +

∂G
∂V

)
∂v

∂y

)
, (A 2h)

Mvzz =

(
r̂ |uw|V

H 2
− g

∂

∂y

)
z, (A 2i)

Mvhh =

[
− r̂V

H

(
|uw|
H
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(

∂ |uw|
∂H

+
∂ |uw|
∂k

∂k

∂H
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H 2
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∂V
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∂G
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)
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Mzuu = − ∂

∂x
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H
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Mhuu = − ∂
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[
(
cb|uw|2 + cs |uw|3H

)
u], (A 2s)

Mhvv = − ∂
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[
(
cb|uw|2 + cs |uw|3H

)
v], (A 2t)

Mhzz = − ∂

∂y
cs |uw|3(V + V St)z, (A 2u)
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Mhhh =
∂

∂x
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(cb|uw|2 + cs |uw|3H )

(
∂uSt

∂H
+

∂uSt

∂k
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Mhqq = − ∂

∂x
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∂uSt

∂q
q

]

− ∂

∂y
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∂vSt

∂q
q

]
, (A 2x)

where cb = H0/U 2
w0 and cs = 1/U 3

w0. Note that if we included the feedback from the
bottom topography in the wave orbital velocity this would add a term

∂

∂y

[
(V + V St)(2cb|uw| + cs3|uw|2H )

(
∂ |uw|
∂H

+
∂ |uw|
∂k

∂k

∂H

)
h

]
(A3)

onto Mhhh and a term

− ∂
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[
(V + V St)(2cb|uw| + 3cs |uw|2H )

∂ |uw|
∂ |A|2 q

]
(A4)

onto Mhqq .
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